EXO小说网

手机浏览器扫描二维码访问

第429章 神仙(第1页)

彻底糊涂。

三土尴尬的笑:“我好像懂了,又好像什么都不懂了……你这意思是我们要用群论理解世界…规范是群表现…不对,是更早的——方程根式之间和流形之间的关系……再早是我们怎么把世界构建、测距成三个空间维度对的……这让我想起关于流形上张量分析,关于平行的定义了。”

担蚱点头:“趁着还有点时间,我给你解惑。

数学是互为证明的……就比如你们定义平行,先是在平面几何内定义平行,平行后有什么表现……反过来在平面几何范畴内,它们满足这些表现,就说它们平行对吧?”

三土点头:“的确如此,关键是流形上的平行……道理跟立体几何一样的……担蚱笑:“最终要坍缩到一个平面内解决问题。

复杂一点给这个平面来个笛卡尔坐标……再地狱点来个复平面……终极是雅可比变换,复平面变成复空间……王艳庆线是时间……老黑提醒:“过了……担蚱继续说:“证明流形上两根线段平行。

你们的思路是先定义能量,然后最小参数化。

得出结论是两点之间能量变化或消耗最小的曲线是直线。

或者在维度内的直线……直线完了,就要投影了,这里是仿射和联系。

是一回事又不是一回事情……就是把这两个曲线找到能比较的面上来。

它们的影子在卡当形上表现为平行,它们就平行。

当然这不算完,还要通过对称,证明这曲线没有扭动。

就是曲率和扭率张量为零……这里我再强调一遍张量的定义:取v为一个张量空间,则一个其变数都限于v或v中之元素的实值多重线性的函数就称为v上的张量。

所有这些v上的张量所生成的向量空间,就称为v上的张量空间。

从v中取得变数个数就称为这个张量的逆变次数,v中正变。

这回明白ds算多一顺便了?多取值一回。”

三土苦笑:“我就记住一个形内,一个形外了。

关于平行,这里这么理解。

在平面上平行的两条直线线段。

通过同样的卡当联系,减少顺便次数仿射到一个大流形内不同的,不扭动的曲线上,我们就说它们在这一取值对应段内,甚至点内,二者是平行的。

但是这里的曲率零,扭率零物理上不存在啊……担蚱白眼:“这里你可以理解平行也是群的一种规则表达方式……方程的根落在平面上,有这种几何的关系……三土苦笑:“您这的几何,或者我们的平面几何就是我们的时空测距……但是时空中时空和质量还有运动的关系,这一套解释不通吧?”

担蚱叹气:“是你们的数学太落后了。

就像ds一样它代表微分运算,但是你总想把它计算,就像联系里说的,不要关注取值,而是这中运算成立。

从运算到运算,最后消元或等于固定值就好了。

你看线性不就是这样吗?零存在的意义。

群的意思是方程的根之间有这种几何性质……三土追问:“那行列式呢……担蚱叹气:“那还是群啊……你这没有逻辑的文科脑袋,就看个花,吟风弄月,世修降表;你也就配两脚羊……三土苦笑:“你直说我是废物我不在意。

热门小说推荐
医道官途

医道官途

天才中医凌游,在大学毕业后为逝世的爷爷回村守孝三年,并且继承了爷爷生前经营的医馆三七堂。可突然有一天,一群大人物的到来,让他的人生出现了转折,本想一生行医的他,在经历了一些现实的打击之后,他明白了下医医人,上医医国的道理,为了救治更多的人,从而毅然决然的走向了官场,游走在政军商等各种圈子。从赤脚郎中,到执政一方,从懵懂青涩,到老成练达,看凌游如何达成他心中安得广厦千万间,大庇天下寒士俱欢颜的崇高理想。...

千里宦途

千里宦途

普通人只要有机会,也可以封侯拜相。看王子枫一个普通的小人物,如何抓住机会搅动风云。每个人都可能是千里马。...

九份婚书:我的师父绝色倾城

九份婚书:我的师父绝色倾城

简介我叫江羽,本想一直留在山上陪着我的绝色师父,却被师父赶去祸害未婚妻了。而且多少?九份婚书!?...

步步升云

步步升云

要想从政呢,就要步步高,一步跟不上,步步跟不上,要有关键的人在关键的时刻替你说上关键的话,否则,这仕途也就猴拉稀了...

官道征途:从跟老婆离婚开始

官道征途:从跟老婆离婚开始

妻子背叛,对方是县里如日中天的副县长!一个离奇的梦境,让李胜平拥有了扭转局势的手段!即将被发配往全县最穷的乡镇!李胜平奋起反击!当他将对手踩在脚下的时候,这才发现,这一切不过只是冰山一角!斗争才刚刚开始!...

官梯险情

官梯险情

叶峰一踏上官梯就遇到两类险情一是多种危险的感情,二是各种惊险的官斗。叶峰三十六岁就被提拔为县教育局副局长,从报到那天起就被卷入这两种险情的惊涛骇浪中。他是草根出生,却有顽强的意志和搏击风浪的能力,他像一叶小舟在惊险莫测的宦海里沉浮出没,劈波斩浪,扬帆远航,步步高升。...

每日热搜小说推荐