手机浏览器扫描二维码访问
互拍马屁道:“我也很荣幸成为教练您的学生。”
……
剩下的时间,沈屠没有打扰秦惊羽,秦惊羽也重新回到思考当中。
孪生素数猜想,即猜测存在无穷多对孪生素数,但孪生素数是有限个还是有无穷多个,至今都是一个无法证明的难题。
她这两天看了关于哥德巴赫猜想证明的过程,毕竟都说孪生素数类似哥德巴赫猜想,两者是一样的。
她之前也被这么误导,可是等她看完之后才发现,这两者没什么直接联系。
只是对孪生质数与哥德巴赫猜想的研究,重点不在于证明,而在于完善质数理论。
如果用哥德巴赫猜想来来证明孪生素数,太过于复杂,要走非常多的弯路,结果也不能保证正确,所以她pass掉了这个想法。
她用之前证明周氏猜想的筛法用在于孪生素数上,发现行不通。
她也请教过赫连城,对方说最先想到的方法是使用欧拉在证明素数有无穷多个时所采取的方法。
或许她真的可以试试从赫连城说的方法入手。
她开始在稿纸上写下,设所有的素数的倒数和为:s=12+13+15+17+111+…
如果素数是有限个,那么这个倒数和自然是有限数。
欧拉证明这个和是发散的,即是无穷大,由此说明素数有无穷多个,那她是不是可以仿用这个方法求孪生素数的倒数和?
她没有迟疑,继续在稿纸上写着,B=(13+15)+(15+17)+……
秦惊羽头脑快速风暴着,等到语音播报飞机快要降落到M国某机场时,她的稿纸上已经满满了几大页。
看到最后证明出的结果,秦惊羽不满的皱起眉头,这个倒数是个有限数。
是错误的!
孪生素数有一个十分精确的普遍公式,是根据一个定理:若自然数q与q+2都不能被不大于根号(q+2)的任何素数整除,则q与q+2是一对素数,称为相差2的孪生素数。
这一句话可以用公式表达:=plm1+b1=……
忽然,她想到了什么,继续写道如果她例如,k=1时,q=2m+1,解得q=3和5,5<32-2,可以3与3+2……从而得到3至3的平方区间的全部孪生素数。
写到这里的时候,她像是困扰了她多久的数字,终于拨云见日,继续写到,k=2时……
忽然,肩膀被拍了下。
沈屠瞥了眼她密密麻麻的稿纸,心里忍不住感慨一声,提醒道:“到了。”
秦惊羽点头,收笔。
她现在找到了证明孪生素数猜想的头绪,也不急于这一时。
收好笔和稿纸,跟着下飞机。
喜欢满级影后穿书,女扮男装帅翻全球()满级影后穿书,女扮男装帅翻全球。
官场,是利益的牢笼胜利者,在人间炼狱失败者,在人间监狱。爱与恨,恩与怨,熙熙攘攘,皆为利往...
精神发疯文学,没有原型,没有原型,没有原型(讲三遍),请不要在评论区提真人哦。金手指奇大,cp沈天青。日六,防盗八十,上午十一点更新江繁星八岁时候看见律政电视剧里的帅哥美女环游世界谈恋爱...
专栏古耽预收微臣诚惶诚恐求个收藏容棠看过一本书。书里的反派宿怀璟是天之骄子,美强惨的典型代表,复仇升级流高智商反派人设,可惜人物崩坏,不得善终。结果一朝穿越,容棠成了文中同名同姓早死的病秧...
朝中无人莫做官,重活一世的秦毅不是这样认为。机遇来自于谋划,时时为朝前铺路,才能高官极品!上一世,含冤入狱,前途尽毁,孤独终老。这一世,从救省城下来的女干部开始,抓住每一个机遇,加官进爵,弥补遗憾,扶摇直上九万里!...
官场如战场,尔虞我诈,勾心斗角,可陆浩时刻谨记,做官就要做个好官,要有两颗心,一颗善心,一颗责任心。且看陆浩一个最偏远乡镇的基层公务员,如何在没有硝烟的权利游戏里一路绿灯,两袖清风,不畏权贵,官运亨通。...
普通人只要有机会,也可以封侯拜相。看王子枫一个普通的小人物,如何抓住机会搅动风云。每个人都可能是千里马。...