手机浏览器扫描二维码访问
屋子里,徐云正在侃侃而谈:“牛顿先生,韩立爵士计算发现,二项式定理中指数为分数时,可以用ex=1+x+x22!+x33!+……+xnn!+……来计算。”
说着徐云拿起笔,在纸上写下了一行字:当n=0时,ex>1。
“牛顿先生,这里是从x0开始的,用0作为讨论比较方便,您可以理解吧?”
小牛点了点头,示意自己明白。
随后徐云继续写道:假设当n=k时结论成立,即ex>1+x1!+x22!+x33!+……+xkk!(x>0)则ex-[1+x1!+x22!+x33!+……+xkk!]>0那么当n=k+1时,令函数f(k+1)=ex-[1+x1!+x22!+x33!+……+x(k+1)(k+1)]!(x>0)接着徐云在f(k+1)上画了个圈,问道:“牛顿先生,您对导数有了解么?”
小牛继续点了点头,言简意赅的蹦出两个字:“了解。”
学过数学的朋友应该都知道。
导数和积分是微积分最重要的组成部分,而导数又是微分积分的基础。
眼下已经时值1665年末,小牛对于导数的认知其实已经到了一个比较深奥的地步了。
在求导方面,小牛的介入点是瞬时速度。
速度=路程时间,这是小学生都知道的公式,但瞬时速度怎么办?比如说知道路程s=t2,那么t=2的时候,瞬时速度v是多少呢?数学家的思维,就是将没学过的问题转化成学过的问题。
于是牛顿想了一个很聪明的办法:取一个”
很短”
的时间段△t,先算算t=2到t=2+△t这个时间段内,平均速度是多少。
v=st=(4△t+△t2)△t=4+△t。
当△t越来越小,2+△t就越来越接近2,时间段就越来越窄。
△t越来越接近0时,那么平均速度就越来越接近瞬时速度。
如果△t小到了0,平均速度4+△t就变成了瞬时速度4。
当然了。
后来贝克莱发现了这个方法的一些逻辑问题,也就是△t到底是不是0。
如果是0,那么计算速度的时候怎么能用△t做分母呢?鲜为人咳咳,小学生也知道0不能做除数。
到如果不是0,4+△t就永远变不成4,平均速度永远变不成瞬时速度。
按照现代微积分的观念,贝克莱是在质疑li△t→0是否等价于△t=0。
这个问题的本质实际上是在对初生微积分的一种拷问,用“无限细分”
这种运动、模糊的词语来定义精准的数学,真的合适吗?贝克莱由此引发的一系列讨论,便是赫赫有名的第二次数学危机。
甚至有些悲观党宣称数理大厦要坍塌了,我们的世界都是虚假的——然后这些货真的就跳楼了,在奥地利还留有他们的遗像,某个扑街钓鱼佬曾经有幸参观过一次,跟七个小矮人似的,也不知道是用来被人瞻仰还是鞭尸的。
这件事一直到要柯西和魏尔斯特拉斯两人的出现,才会彻底有了解释与定论,并且真正定义了后世很多同学挂的那棵树。
但那是后来的事情,在小牛的这个年代,新生数学的实用性是放在首位的,因此严格化就相对被忽略了。
这个时代的很多人都是一边利用数学工具做研究,一边用得出来的结果对工具进行改良优化。
偶尔还会出现一些倒霉蛋算着算着,忽然发现自己这辈子的研究其实错了的情况。
总而言之。
在如今这个时间点,小牛对于求导还是比较熟悉的,只不过还没有归纳出系统的理论而已。
徐云见状又写到:对f(k+1)求导,可得f(k+1)=ex-1+x1!+x22!+x33!+……+xkk!由假设知f(k+1)>0那么当x=0时。
f(k+1)=e0-1-01!-02!--0k+1!=1-1=0所以当x>0时。
因为导数大于0,所以f(x)>f(0)=0所以当n=k+1时f(k+1)=ex-[1+x1!+x22!+x33!+……+x(k+1)(k+1)]!(x>0)成立!
最后徐云写到:综上所属,对任意的n有:ex>1+x1!+x22!+x33!+……+xnn!(x>0)论述完毕,徐云放下钢笔,看向小牛。
只见此时此刻。
这位后世物理学的祖师爷正瞪大着那一双牛眼,死死地盯着面前的这张草稿纸。
阴错阳差中,仕途无望的宋立海认识了神秘女子,从此一步步走上了权力巅峰...
天才中医凌游,在大学毕业后为逝世的爷爷回村守孝三年,并且继承了爷爷生前经营的医馆三七堂。可突然有一天,一群大人物的到来,让他的人生出现了转折,本想一生行医的他,在经历了一些现实的打击之后,他明白了下医医人,上医医国的道理,为了救治更多的人,从而毅然决然的走向了官场,游走在政军商等各种圈子。从赤脚郎中,到执政一方,从懵懂青涩,到老成练达,看凌游如何达成他心中安得广厦千万间,大庇天下寒士俱欢颜的崇高理想。...
官场,是利益的牢笼胜利者,在人间炼狱失败者,在人间监狱。爱与恨,恩与怨,熙熙攘攘,皆为利往...
叶峰一踏上官梯就遇到两类险情一是多种危险的感情,二是各种惊险的官斗。叶峰三十六岁就被提拔为县教育局副局长,从报到那天起就被卷入这两种险情的惊涛骇浪中。他是草根出生,却有顽强的意志和搏击风浪的能力,他像一叶小舟在惊险莫测的宦海里沉浮出没,劈波斩浪,扬帆远航,步步高升。...
朝中无人莫做官,重活一世的秦毅不是这样认为。机遇来自于谋划,时时为朝前铺路,才能高官极品!上一世,含冤入狱,前途尽毁,孤独终老。这一世,从救省城下来的女干部开始,抓住每一个机遇,加官进爵,弥补遗憾,扶摇直上九万里!...
周胜利大学毕业后,因接收单位人事处长的一次失误延误了时机,被分配到偏远乡镇农技站。他立志做一名助力农民群众致富的农业技术人员,却因为一系列的变故误打误撞进入了仕途,调岗离任,明升暗降,一路沉浮,直至权力巅峰...